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ABSTRACT

We study tile scattering of an incident wave by a flexible panel. The panel vibration

is governed by the nonlinear plate equations while the loading on the panel, which is the

pressure difference across tile panel, depends oll the reflected and transmitted waves. Two

models are used to calculate this structural-acoustic interaction problem. One solves the

three dimensional nonlinear Euler equations for the flow-field coupled with the plate equa-

tions (tile fully coupled model). The second uses the linear wave equation for tile acoustic

field and expresses the load as a double integral involving the panel oscillation (the decoupled

model). The panel oscillation governed by a system of integro-differential equations is solved

numerically and the acoustic field is then defined by an explicit formula. Numerical results

are obtained using the two models for linear and nonlinear panel vibrations. The predictions

given by these two models are in good agreement but the computational time needed for the

"fully coupled model" is 60 times longer than that for "the decoupled model".

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract Nos. NASl-19480 and NASl-18605 while the third author was in residence at the Institute for (',om-

puter Applications in Science and Engineering (ICASE), NASA Langley Research (',enter, Hampton, VA
23681-000 I.
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1. Introduction

We consider the scattering of an incident acoustic wave by a planar interface, tile (x,

z) plane. The interface is a rigid surface except on the flexible thin panel, D, with panel

thickness h much smaller than the size L of the panel, or the size of D,

h/L<<1. (1.1)

This is a basic structural-acoustic interaction problem simulating the transmission of an

external acoustic source, say the engine noise, through the airframe into its interior. It

is an interaction problem because the incident wave excites panel oscillation which in

turn induces transmitted and diffracted waves. Meanwhile, these waves contribute to the

loading on the panel. Although in an engineering problem, the typical amplitude of the

transverse displacement, r/*, has to be much smaller than the size of the panel, i. e.,

,7*/L<<1, (1.2)

the problem can be nonlinear in three different aspects:

(1) Tile panel oscillation can be nonlinear when the transverse displacement of the panel

is not nmch smaller thaal the panel thickness h, that is

77* _ h. (1.3)

Nonlinear plate equations are needed usually when the incident wave is in resonance

with the panel oscillation.

(2) In the near-field, of length scale L, the flow-field is linear and obeys the simple wave

equation but in the far-field, of length scale much larger than L, the flow-field may

become nonlinear when the second order terms are needed to account for the gradual

steepening of compression waves.

(3) In case the flow-field is nonuniform and/or the initial pressure variation is no longer

much smaller than the ambient pressure then we have nonlinear flow in the near-field.



We have to solve the Euler equations with appropriate initial data to simulate an

incident waveand far-field conditions.

i
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Regardless of whether the flow-field is linear or nonlinear, the plate should have sufficient

rigidity so that the transverse displacement of the plate remains small and hence the

governing equations for the plate derived under assumption (1.1) remain valid.

For the problem of sound trm:smission through a moving airframe, the external acous-

tic field is governed by the convective wave equation while that in the interior by the simple

wave equation. Also the pressure and density in the exterior can be much lower than those

in the interior. In the simple model simulating the experimental data with no-flow on both

sides of the panel, both acoustic fields are governed by the simple wave equation with the

same ambient pressure and density. The validity of the linear theory for the flow-field is

confirmed by the investigations of Frendi et al. [1,2] and Maestrello et al. [3]. They showed

that even when the panel vibration is nonlinear, the acoustic field can remain linear.

The pressure difference across the panel induces the panel oscillation which in turn

excites the transmitted wave and an additional reflected wave. Thus the solution of the

panel oscillation is coupled with the solutions of the scattered and transmitted waves which

satisfy the far-field radiation conditions for outgoing plane waves (see for example [4]). In

general numerical solution of the scattering of an incident wave by an elastic scatterer,

an interface, or a panel, requires the introduction of a finite computational domain for

both acoustic fields. Higher order radiation conditions were derived [5-6] so that they can

lye imposed on the boundary of the finite computational domain to give more accurate

N_proximation to the solution in the unbounded domain. Since the size of the computa-

tional domain has to be nmch larger than the size of the panel or a scatterer, numerical

solution of this three-dimensional unsteady problem is very tedious especially when the

computation has to be continued for a long time relative to the period of oscillation of the

panel. Furthermore, the accuracy of the solution depends not only on that of the numeri-

cal solution of the differential equations but also on the approximate boundary conditions.

Refinements of the grid size m:d time step have to go with an enlargement of the computa-

tional domain. It is desirable to find exact boundary conditions so that the computational
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domain does not have to be much larger than the scatterer and is independent of the choice

of grid size. The exact conditions were presented in [7] for a scatterer or inhomogeneous

mediunl of bounded support. With the scatterer inside the computational domain, the

integral representation of the solution of the simple wave equation is applicable to the

region outside and on the boundary of the computational domain.

Here the scatterer is a panel embedded in a rigid plane. The integral representation

can be applied on the panel and the integrand involves only the normal velocity of the

panel [8, 9]. Thus we have a system of integro-differential equations for the panel oscillation

decoupled from the acoustic field. This system is referred to as the decoupled nmdel.

For the case that the acoustic wave length is much smaller than L, the integral repre-

sentation can be approximated by the local derivatives of the panel oscillation and hence

the integro-differential equations are reduced to partial differential equations [8, 9]. This

approximation is not applicable here because in the experimental data, the acoustic wave

length is comparable to L. We need numerical solution of the integro-differential equations

for the panel oscillation and then we can use the integral representation to evaluate the

acoustic field and the nonlinear waves in the far-field by Whitham's theory or matched

asymptotics.

Note that the solution of the decoupled panel oscillation is an unsteady two dimen-

sional problem in the finite domain T_ and is several orders of magnitude simpler than the

solution of the fully coupled problem. To show the efficiency of the decoupled model and

the accuracy of the solution even when the pmlel oscillation is nonlinear, we compare the

solution of this decoupled system with the solution of the fnlly coupled problem for which

we solve the three-dimensional nonlinear Euler equations for the flow-field coupled with

the nonlinear equations for the panel oscillations.

In the next section we present the mathematical formulations of these two models and

discuss their applications in general. Section 3 describes the various numerical techniques

used to solve the problems involved. The results and discussion are given in section 4, and

the conclusions are in section 5.



2. Formulation of the Two Models

Tile physical problem being studied experimentally is that of the nonlinear oscillations

of a typical aircraft panel excited by harmonic plmm waves at normal incidence. The panel

is clamped onto a large rigid plate. Let the typical panel be represented by a rectangular

domain :D in the (x,z) plane, with length L, width W and one vertex located at (x0, z0),

i° e,,

:D ----{(x,z) Ix0 < x < z0 + L, z0< z < z0 + W} . (2.1)

The compliment of T_ in the (x,z) t)lane represents the rigid plate. The incident side is

the half space y :> 0 and the transmitted side is the half space y < 0. Both sides have

the same ambient pressure p_ and temperature T_ and hence the same speed of sound C

and density p_. \¥e denote the pressure and velocity potential of the flow-field by p and

¢ and use the superscripts + and - to denote the quantities on the sides y > 0 and y < 0.

On the side y> 0, the superscripts i and r are used to denote the quantities associated

with the incident and reflected waves, respectively. These two waves are mirror images

with respect to the (x, z) plane. When the incident waves are plane waves advancing in

the direction opposite to the y axis and hitting the (x, z) plane at t = 0, we have

¢")(t,_,y,z) = f(ct + y) and ¢(_)(t,x,y,z) = f(Ct- y), (2.2)

with ](_) = 0 for _ _< 0. Therefore ¢(_) = 0 when 0 _> y < Ct.

Transverse oscillation, 7j, of the rectangular flexible panel, T_, is excited by the pressure

difference across the panel for t > 0 and the oscillation in turn induces scattered waves ¢_

in the incident side and transmitted waves Ct. Both waves have the homogeneous initial

data at t=0,

¢(_)= ¢I_)= 0, _ > 0,
(2.3)

¢(') = ¢I') = 0, u < 0.

Under linear theory, we have

¢(_)(t,x,y,z) = ¢(0(t,_,_y,_)

¢(')(t, _,-_, _) = -¢(_)(t,_, y,z) for y>0.

(2.4)
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The wavefronts of ¢(s) aald$(0 are the envelopesof the sonic sphereswith radius Ct and

centered on tile panel in y > 0 and y < 0, respectively. Tile pressure in the incident and

transmitted sides are

p+ _ p_ = p(i) + p(r) q_ p(_) , y > 0

p- _p_ =p(t) , y < 0

(2.5)

and tile pressure difference across the panel is

Ap = p- - p+ = 2p (t) - [p(i) ..1_ p(r)] , y _- 0 , (x, z) E "/9 • (2.6)

In this section we fornndate two mathematical models to compare with and compli-

ment the experimental studies. We present the system of equations governing the nonlinear

flow-field and l)anel oscillation (the fully coupled model) in Section 2.1 and fornmlate the

system of integro-differential equations for nonlinear panel oscillation including the effect

of a linear acoustic field (the decoupled model) in Section 2.2.

2.1 The Fully Coupled Model

In this model the structural-acoustic interaction is analyzed by solving the three-

dimensional nonlinear Euler equations together with the nonlinear plate equations. The

configuration of the computational domain is shown in Fig. 1. In cartesian coordinates, x,

y and z, the compressible, nonlinear Euler equations can be written in conservation form

as

Qt=F.+Gy+H-, (2.7)

where Q is the vector (p, pu, pv, pw, e), p is the density, pu, pv and pw are the x, y and

z momenta respectively, and e is the total energy per unit volume given by

1 112
= + + + p .T, (2.S)

with c. being the specific heat at constant vohune. In eq. (2.7), the flmctions F, C and



H are:

all (l

r

G

I )
pu 2 + I9

| puv
| puw
\ _(_ + p)

puv

pv 2 + P

pvw

_(_ +p) J

I )
puw

H = [ pvw
Pw2 + P

\ w(_ + p)

In addition to eq. (2.7), tile equation of state of an ideal gas is used:

(2.9)

p = pRT, (2.10)

where p is the pressure, R the gas constant, and T the temperature. Since we assmne that

the incident wave hits the panel at t = 0, the flow on the transmitted side, y < 0, is at

rest for t < 0. The initial data at t = 0 for y < 0 are

u=v=w=O, p=p_ and p=po¢. (2.11)

On the rigid plate we have zero normal velocity,

v(x,O,z) = 0 for (z,z) _ _ . (2.12)

The nmtion of the flexible panel, D, is described by a system of three, nonlinear partial

differential equations given by [10];

DV4U + pvhTltt -4-771t = Ap

1 2
Eh [(uO + _,l_)(,_ + ,_,]._)+ 1 _v---- _

1

+ ( 0 + _,]_)(,],_ + "'1_)

0
+ (1 -,,),l_..(u °,+ _ + ,l_,.)]

6
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where

0 0 0
Uzz + dl u. z + d2wxz = -Tlx(71xx + dl'l.....) - d271.-71_..

0 0 0
Wzz + dlwxx + d2u_z = -71z(71,.z + dlTlz_ ) - d271_71x,.

V4Z] : Zlxxx x + 271_x_, + ,lz_ _ (2.14)

1 - v 1 + v Ell s

dl- 2 ' d2- 2 ' D=12(1-v2)' (2.15)

u ° and w ° are the in-plane disl)lacements , and ,1 is the transverse displacenlent. The

physical constants for the panel appearing in (2.13) are; the stiffness (D), the density (tgp),

the thickness (h), tile physical damping (7), the modulus of elasticity (E) and the Poisson

ratio (v). The system of equations (2.13) is solved subject to the homogeneous initial

condition

at t=O u °=w °=7/=71t =0 (2.16)

and the clamped boundary conditions on C given by

x=x0 , x0+L, u°=w°='l=71_ =O,

z=z0 , z0+W, u °=w °=71=71,=0.

(2.17)

In eq. (2.13), the h,ad Ap defined by (2.6) contains the coupling with the acoustic field pt

and the f()rcing term (p(i) + p(_)) which represents the h)ad on the panel if tile panel were

rigid. We assume tile forcing term to be a harmonic wave of the f()rm

p(i) + p(,-) = • sin(wt) H(t) on y = 0 + (2.18)

where e and w are the amplitude mad frequency of the wave and H denotes the Heaviside

unit step function. The h)ad on the panel T) given by (2.6) becomes

Ap = [2p'-• .sin(wt)] H(t). (2.19)

Another condition coupling the flow-fields and the l)anel oscillation is the kinematic con-

ditions,

v. (2.20)
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They are imposed o11 y = 0 + because of the small panel displacement, (1.1). The nmnerical

scheme for the solution of the nonlinear plate equation (2.13) and the Euler equations (2.7)

for the transmitted waves with homogeneous initial data will be described in Sec. 3.

2.2 The Deeoupled Model

Now we analyse the nonlinear panel oscillation excited by a weak incident pressure

wave, p(0, under the assmnption that the pressure fluctuation remains nmch smaller than

the ambient 1)ressure poo, i. e.,

(p-poo)/poo << 1. (2.21)

Consequently, the small disturbance theory is applical_le to the flow fields in the incident

and transmitted sides and the panel/acoustic interaction problem is described by (2.1) -

(2.6). The velocity potential O+(t, x, y, z) is governed by the simple wave equation,

for ±y>0, (2.22)

i

and the acoustic pressure and velocity v =l: are related to the potential by

p+ = -p_OtO + and v + = VO + . (2.23)

In particular, we have v = 0yO where v denotes the vertical velocity. The vertical dis-

placement of the panel, q(t, x, z), is governed by the system of partial differential equations

(2.13). To produce the special forcing term, (p(0 + p(r)), acting on the panel specified by

(2.18) in Sec. 2.1, the incident potential should be

C ye cos[w(t + )]H(t + _).¢(0(t, x, y, z) - 2po_wC
(2.24)

Note that the incident wave ¢(i) is a solution of (2.22) in the whole space. When the panel

is rigid, the incident wave is reflected by the rigid (x, z) plane _nd the reflected wave is,

¢(r)(t,x,y,z) = ¢(O(t,x,-y,z) for y >_ 0 . (2.25)

8



On the side y < 0, the flow-field remains at rest because there is no transmitted wave.

For a flexible panel, tile panel oscillation excited by the pressure difference across the

panel -2p(i)(t, x, 0 + , z) induces a scattered wave ¢(") oll the incident side and a transmitted

wave ¢(t). Thus we write

q) = ¢(i) + ¢(") + ¢(") , y > 0 (2.26a)

and

(I) = ¢(t) , y < 0. (2.26b)

Note that ¢(s) and ¢(t) are governed by the simple wave equation (2.22) in y > 0 and y < 0

respectively. The kinematic conditions on the (x, z) plane, (2.20) and (2.23), become

Oy¢(s)(t,x,O+,z) = Ot,l(t,x,z) and Oy¢(t)(t,x,O-,z) = Ot,l(t,x,z) , (2.27)

where 71 denotes the extension of the transverse disl)lacement of the panel, T_, to the (x,

z) plane, i. e.,

71= O, (x,z) _ :P . (2.28)

If the incident wave fl'ont hits the panel at t = 0, we caaa impose the homogeneous initial

conditions on ¢(_), ¢(t) and 71,

¢(t) =0 Ore (t) =0 and 71 O, Or71 0 for t <0¢(_)=0, ore (_)=0, , = = - •

(2.20)

Since the ambient fluid above and below the panel are the same, (2.27) implies that the

velocity potential induced by the panel oscillation has to be anti-symmetric in y, i. e.,

¢(')(t,_,y, z) = -¢(')(t, x, -y, z), y < 0 (2.30)

Then the pressure difference across can be written as

_p= 2po_[0,¢(_)(t,_,0+, z) + ot¢(_)(t,x,O+,z)], (x, z) E I) . (2.31)

9



The derivation of the system of equations, (2.21) to (2.31), coml)letesthe formulation of

the structural�acoustic interaction problenl using linear theory for the acousticfields. The

panel oscillation, which can be nonlinear is governed by the system of equations, (2.13) -

(2.17).

The velocity potential ¢(_) induced by the l)anel oscillation, 1 is governed by the wave

equation (2.22), the initial conditions (2.29) and the boundary condition (2.27). The

solution is given by the Kirchhoff fi)rmula,

1 /f_ {,h(t,x',z')} dx'dz', (2.32)¢(_)(t,x,y>0, z)- 27r R

where R = [(x - x') 2+ y2 + (z - z')S]1/2 denotes the distance from a l,oint (x,y > O,z) to

a _o_,,'eeat (_', 0, Z') _n_i{.} _lenote._the ,'et_,'(leclva_ueof, i. e.,

{,j,(t,_',0, z')} = ,i,(t - R,x',0,z'). (2.33)

The domain of dependence of ¢(')(t, x, y, z) is the circular disc _/in the (x', z') plane, i.

e._

_'_ [ R _ Ct or ,.2 = (z'- x) 2 + (z t - z) 2 _ C2t 2 - y2 . (2.34)

The domain of integration in (2.32) is the intersection of 7-/and the panel, i. e.,

= 7-/ 71D. (2.35)

Now we introduce the polar coordinates, r, 0 , centered at (x, z), i. e.,

' - z = rsin0 (2.36)x -x=rcos0 and z'

!
i
!

and (2.32) becomes,

¢(_)(_,_,y> 0,z) =-2_ [

with

R F dr

dO gt(t- -_,r,O) ] R ' (2.37)

g(t,r,O) = ,l(t,x + ,'eos_,z +,'sin0) .

10
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Here R = (7.2 + y2)1/2 represents the slant height of a circular cone with vertex P(x, g, z),

a vertical axis and a base circle of radius r in the (x, z) plane. On account of (2.28), we

can extend the domain of integration to 7-/and rewrite (2.37) as an iterated integral,

1 fo c't¢(")(t,x,_ > 0,z) - 2_r f0 2_ R 7' dr[ dO9,(t - F,,',O) ] R ' (2.39)

Tile integral in 0 represents the contribution of the sources on a base circle of radius r.

In (2.31), we need to relate the unknown, ¢l")(x, 0+, z) on the panel to ,l(t,x,y) for

(:r, z) _ _. This is obtained by differentiating the above equation with respect to t and

using (2.28). This results in replacing ¢(_) on the left-hand-side of (2.39) and gt in the

integrand by ¢I _) and gu, respectively.

As y ---* 0 +, R _ r and the circular disc _ is bounded by the sonic circle r = Ct.

Equation (2.39) yields

_"_(t, _,0+,_) - 2rr gtt(t- -_,,',0) d," dO. (2.40)

Note that in this form we renmve the kernel 1/R in (2.32), which becomes singular as y _ 0

and r ---4 0 and shows that the area of the domain of integration is bounded above by 2rcCt.

By using (2.31) and (2.40), (2.13) becomes a system of integro-differrential equations for

the panel oscillation, 7I. The initial and boundary conditions for _l are (2.16) and (2.17).

Thus we complete the formulation of the decoupled model. The numerical solution of this

system will be described in Sec. 3.

2.3 Application to Noise Transmission in a Supersonic Flight at High Altitude

The analysis reported in Sec. 2.2 is based on two assumptions

(i) The flow-fields above and below the panel have the same ambient condition, i. e.,

p+_= p:o,p+_=p;o and % = 0.

(ii) The panel is planar and not prestressed, i. e., under zero tension.

11



The analysis can be employed to estimate the noise transnlitted into the fuselage flying

at low speed and a relatively low level, where the static pressure remains nearly equal to

one atmosphere. Assumption (i) is valid when terms of the order of the flight Math number

M are omitted. Assumption (ii) is valid since the size of the panel L is nmch smaller than

the radius of the fuselage, RI. There is 11o hoop stress when p+ = p_ under assumption

(i). In practice, there is a pressure difference (p_ -p+), even for a low Mach number

flight.

For an airplane cruising at subsonic or supersonic speed, it is necessary to account for

the differences in densities and in pressures inside and outside the fuselage and the moving

media outside and to include the contribution of the hoop stress to the panel oscillation.

The formulation of the decoupled models for structural acoustic interactions in a moving

media at subsonic and supersonic speeds is carried out using the linear theory for the flow-

field. The system of integro-differential equations for the panel oscillation is then reduced

to a system of differential equations when the acoustic wave length is much smaller than

the surface wave length [11].

In this subsection, we show that with minor modifications the above analysis becomes

applicable to a supersonic airplane cruising at high altitude. We make use of the fact that

the cabin pressure, P_o, and temperature and hence the density are maintained near the

ambient level while the outside pressure p+ and density p+ at the flight altitude H are

much lower. The density ratio, p+/p_ is about 1/10 or 1/20 when H -- 60,000 or 80,000

ft. The same is true for the pressure ratio while the absolute temperature ratio and hence

the ratio of the speed of sound remains O(1), i. e.,

# = p+lp <<1, p /p:o = 0(,) and C+IC - = O(1). (2.41)

Thus, the density ratio # serves as a small parameter in the following modification of the

analysis in Sec. 2.2.

On the transmitted side, y < 0, the governing equations, (2.13) (2.23), (2.26b), (2.27)

and (2.29), remain valid when the superscript "-" is added to po_ and C. On the incident

side, y > 0, equations (2.25), (2.26a), and (2.29) remain the same while (2.22), (2.23)

12



and (2.27) have to be modified to include the convection terms. Consequently, (2.30) and

(2.31) will be modified. Ill particular, we note the acoustic pressure relationship (2.23) ill

the transnfitted side,

p- _ p_¢ = p(t) -_ _p_Ot¢(t) , y < 0 (2.42)

and that on tile incident side,

p+ _ p+ = p(i) + p(r) + p(_) = _t_p2,[O t :4-MC+Ox]_, y > 0. (2.43)

Using (2.26a) and (2.43), we have

p(S) = -#p:o[Ot + MC+O.]¢ (_) y > 0, (2.44)

Likewise, tile kinematic condition on the y = 0 + is modified and (2.27) becomes,

Oy¢(")(t,x,O+,z)=[Ot+MC+O,],l(t,x,z) and O_¢(t)(t,x,O-,z)=Ot,l(t,x,z). (2.45)

With the convection term at most of tile order of tile unsteady term, or one order smaller

under the short acoustic wave approximation, we deduce from (2.45)

= (2.46)

and then from (2.44)

= o(# v(')(t,x,O-,z)) (2.47)

By using (2.41) and (2.44), the load on the panel, which is the pressure difference, 1)ecomes

Ap = (p_ -- p+) + [--2p (i) + (p(t) _ p(S))]H(t)

= p_[1 - O(#)] + [-2p (i) + p(0(1 + O(#)]H(t) .

(2.48)

The constant load (p_ -p+) _ P2o is present for all t. The unsteady load due to the

acoustic waves is present only for t > 0 and is much smaller then P2o. The constant load

13



producesa static deflection7t0(x,z) which does not generate far-field sound. Tlle unsteady

load excites panel oscillation 7/(t, x, z) and generates the far-field sound. Therefi)re, we

separate the static panel deflection from the unsteady oscillation,

,j = ,io(x, + ,/(t, (2.49)

l

Note that the panel oscillation, _1, is coupled with only the acoustic field (2.48) in the

transmitted side, since p(0 is prescribed and p(") is 0(#) related to p(t). This is equivalent

to say that in a high altitude flight the acoustic dmnping in the flow-field outside of the

fuselage is of the order of the density ratio tt = p+/p_ relative to that inside and hence

is neglegible.

Since the fluid is at rest inside the fuselage, the transmitted wave obeys the simple

wave equation (2.22). We can make use of the analysis in See. 2.2, in particular, (2.30)

and (2.40), to relate the on surface transmitted pressure to the panel oscillation,

p= [c-, " ,.,0) a0 (2.50)p(t)(t, x, O- , z)= -p_Otd? (t) = 21r Jo .Io gtt(t- C----_, •

Thus we have a closed system for the panel oscillation, '1', from which we can then compute

the transmitted and scattered acoustic fields.

3. Numerical Methods

For the fully coupled model, the nonlinear Euler equations, (2.7), are solved using an

explicit finite difference scheme. The scheme, which is a generalization of MacCormack's

scheme obtained by Gottlieb and Turkel [12], is fourth-order accurate in space and second-

order accurate in time. Further details on the implementation of the scheme can be fimnd

in Frendi et al. [1,2]. The physical boundary of the coml)utational domain (the 1)ottom

boundary, see Fig. 1) is composed of a flexible panel clamped between rigid plates. Over

the rigid plates, the vertical velocity is zero (v = 0) and the surface temperature is T,,,,

which in this paper is the same as the fluid temperature, Tc¢. The x and z components

of the velocity (u and w, respectively) are obtained through linear extrapolation fi'om the
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interior of tile comlmtational domain. The pressure boundary condition is obtained using

tile normal momentum equation by simply imposing the normal gradient of the sum of

pressure and vertical momentum flux to be zero, i. e., Ou( p + pv 2) = O. Over the flexible

panel, the vertical velocity is set to be equal to that of the panel and the temperature is

Tw. The x and z velocity components and the pressure are extrapolated fi'om tim interior

of the computational domain. The apl)ropriate boundary conditions on the coml)utational

domain are derived using the method of characteristics [13]. One should inention that

the characteristic boundary conditions and the extrapolation are only first order accurate,

while the interior scheme is fourth order. These boundaries are believed to be a source for

numerical error in the fully eoul)led model. The dimensions of the coml)utational domain

are, 61 cm, 3.05 m and 40.64 cm in the x, y and z directi(ms, respectively. The number of

computational points used are, 121,241, and 81 in the respective directions.

The nonlinear plate equations, (2.13), are solved using a finite element method (level-

oped by Robinson [14]. The panel is 30.5 cm long, 20.32 cm wide and 0.102 cm thick, and

the number of elements used are 6 and 8 respectively.

Since the grid used for solving the plate equations is rectangular, it is easiier to

evaluate the integral in (2.40) in cartesian coordinates. In this case there is a singularity

at each computational point corresponding to r = 0. In order to overcome this difficulty,

a Taylor series expansion up to the second order is used to calculate the contribution of

the singular point. The contribution of the various points on the panel that lie within

the sonic circle (R < Ct) is calculated by first integrating in x using a combination of

Simpson and trapezoidal rules. The result is then integrated in z using Simpson's rule

of integration. Because of the presence of the retarded time in the integral, the vertical

velocity of the plate (_]t) is stored at each point for several time-steps. The evaluation

of the double integral can use a much larger time step than the At for the integration of

the differential equations, yet having the same degree of accuracy. For a plate of given

dimensions (L, W), and for a fixed time-step At, the maximum nunlber of time-steps to

be stored is N = x/'L 2 + W2/(CAt). The number N has to be changed when calculating

the radiated pressure away from the plate. The mmfl)er N is related to the radius of the
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largest sonic circle in the domain that contains the flexible panel. For the cases presented

in the next section N = 1503 for a time-step At = 4x10 -6 sec.

4. Results and Discussion

The mtmerical schemes for the two models presented in Sec. 3 are used to predict tile

vibration of a flexible panel and the resulting acoustic radiation. Tile panel is forced to

vibrate by harmonic plane acoustic waves at normal incidence. The frequency of the source

is 751 Hz, which corresponds to a natural frequency of the panel. Two different amplitudes

of the incident waves are used. The properties of the pmml, which are considered to be

uniform, are: density pp = 4450.15 Kg/m 3, modulus of elasticity E = 1.10316x1011 N/m 2,

Poisson ratio r/ = 0.33 and a damping ratio of 0.01. The acoustic fluid properties are:

temperature Too = 288.33 °K, density p_ = 1.23 Kg/m 3, pressure poo = 1.013x10 s N/m 2

and sound speed coo = 340 m/see. The specific heat at constant volume is c,, = 1.004

KJ/(Kg °K), the ratio of specific heats is 7 = %/c_ = !.4. In the-far field, the fluid is at

rest. The variables plotted on figures 2-5 are nondimensional. The reference quantities are

given by

(x, y, z, _l),'_f = l_,l,
l_i C 2

tre f - C ' and rre f - cv

07l:

P,_i = Poo, (u, v, w, -_),_s = C,

where the reference length is Irel = 0.3048 m.

and (p,e)rel = pooC 2. (4.1)

Figure 1 shows the configuration of the computational domain, a rectangular box

with the lower side composed of a flexible panel clamped between rigid plates. For a low

excitation amplitude, 100 dB or 5 x 10 .4 arm., Fig. 2 shows that the panel response is

linear. In this case, both models predict the stone panel response as shown by the figure.

This result is expected since the incident wave is extremely weak. Figure 3a-b show the

time lfistories of the radiated near- and far-field pressures, 2.54 cm and 1.524 m, or L/12

and 5L, away from the panel center respectively. The radiated pressure predicted by the
22 :i : :

linear theory (2.32) is in excellent agreement with that predicted by the Euler equations

(2.7).
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When tile level of the excitation is increasedto 160dB, or 0.01 atm., tile response

of the panel becomesnonlinear as shownby Fig. 4. The time history of the panel center

displacement shows a non-periodic behaviour characteristic of nonlinear response. The

figure also showsthat even when the panel oscillation is nonlinear, the predictions of the

two modelsare in reasonablygood agreement,becausetile pressurevariation is still much

smaller than p_ = 1 atm. The radiated near- and far-field pressure time histories are

shown on Fig. 5a-b. In the near-field, L/12, the predictions of the two models are in

reasonably good agreement and the maximum pressure variation is of the order of 0.02

arm. In the far-field, 5L, as shown in Fig. 5b, the maxinmm pressure variation is of the

order of 10 -4 atm. and is reduced by a factor of 100 from that in the near-field. In Fig.

5b, the difference between the "decoupled model" and the "fully coupled model" can be

obseved. But this difference is of the order of 10 -3 times the pressure variation in the

near-field and is within the accuracy of the numerical solution.

From a computational view point, it is important to compare the performance of the

two models based on the CPU time required by each calculation. In the linear vibration

regime, the "fully coupled model" used 36000 seconds of CPU time on a Cray-ymp to

advance the calculation by 10000 time-steps, whereas the "decoupled model" used only

1000 seconds for the same calculation. In the nonlinear vibration regime, grid refinements

were needed to resolve the large gradients both on the paaml aald in the radiation field.

Therefore, in order to advaalce the calculation by 10000 time-steps, 72000 seconds were

used by the "fully coupled model" while the "decoupled model" used only 1200 seconds.

5. Conclusions

An efficient model for coupling the vibration of a pasml to the on surface acoustic radi-

ation was derived. The model uncouples the panel vibrations from the acoustic wave prop-

agation problem. The results showed that this model, referred to a.s "decoupled model",

accurately predicts the panel response mad acoustic radiation in the linear and nonlinear

vibration regimes so long as the pressure variation in the flow-field remains much smaller

than the ambient pressure. For the cases studied in this paper, the computational cost of
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the numerical integration of this model is 36 times cheaper in the linear regime and 60

times cheaper in the nonlinear regime than tile cost of tile "fully coupled model".
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